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  A BSTRACT  
 We review the effect of some key advances in the character-
ization of molecular mechanisms of signaling by G protein-
coupled receptors (GPCRs) on our current understanding 
of mechanisms of drugs of abuse. These advances are illus-
trated by results from our ongoing work on the actions of 
hallucinogens on serotonin (5-HT) receptors. We show how 
a combined computational and experimental approach can 
reveal specifi c modes of receptor activation underlying the 
difference in properties of hallucinogens compared with 
nonhallucinogenic congeners. These modes of activation —
 that can produce distinct ligand-dependent receptor states —
 are identifi ed in terms of structural motifs (SM) in molecular 
models of the receptors, which were shown to constitute 
conserved functional microdomains (FM). The role of sev-
eral SM/FMs in the activation mechanism of the GPCRs 
is presented in detail to illustrate how this mechanism can 
lead to ligand-dependent modes of signaling by the recep-
tors. Novel bioinformatics tools are described that were 
designed to support the quantitative mathematical model -
ing of ligand-specifi c signaling pathways activated by the 
5-HT receptors targeted by hallucinogens. The approaches 
for mathematical modeling of signaling pathways activated 
by 5-HT receptors are described briefl y in the context of 
ongoing work on detailed biochemical models of 5-HT2A, 
and combined 5-HT2A/5-HT1A, receptor-mediated activa-
tion of the MAPK 1,2 pathway. The continuing need for 
increasingly more realistic representation of signaling 
in dynamic compartments within the cell, endowed with 
spatio-temporal characteristics obtained from experiment, 
is emphasized. Such developments are essential for attain-
ing a quantitative understanding of how the multiple func-
tions of a cell are coordinated and regulated, and to evaluate 
the specifi cs of the perturbations caused by the drugs of 
abuse that target GPCRs.  

   K EYWORDS:     molecular modeling  ,   molecular dynamics 
simulations  ,   membrane proteins  ,   signaling  ,   mathematical 
modeling  ,   bioinformatics tools    

   INTRODUCTION 
 The rapid advances in the characterization of molecular 
mechanisms of signaling by G protein-coupled receptors 
(GPCRs) have enhanced the understanding of mechanisms 
of drugs of abuse. In particular, the recognition that the 
translation of intra-receptor mechanisms of activation into 
intracellular signaling through protein-protein interactions 
can take diverse forms that are ligand – dependent, is begin-
ning to explain the special properties exhibited by drugs of 
abuse targeting this type of receptors. This relation is illus-
trated here by recent results from our ongoing work on the 
actions of hallucinogens on serotonin receptors, which are 
members of the rhodopsin-like GPCR family. The fi ndings 
are reviewed briefl y in the context of broader advances in 
understanding GPCR signaling to clarify the effect on the 
emerging understanding of cellular mechanisms of the hal-
lucinogenic drugs of abuse that target these receptors. 
 A very recent review of the structures, pharmacology, and 
neurophysiology of hallucinogens provides a thorough and 
thoughtful analysis of the current information and under-
standing regarding the mechanisms underlying hallucino-
gen action. 1  The review illustrates as well how many of the 
fundamental questions regarding these mechanisms remain 
unanswered, despite the abundance of information available 
in the literature from work at all the levels accessible to 
physiological, pharmacological, and behavioral approaches. 
The understanding of the involvement of the 5-HT2 recep-
tors targeted by the hallucinogens in these mechanisms, and 
the molecular and structural requirements for the function 
of these GPCRs in cellular signaling, are equally 
incomplete. 
 To change this situation, we have undertaken a coordinated 
collaborative effort that brings together experimental and 
computational approaches. The research effort is supported 
by the National Institute on Drug Abuse (Bethesda, MD) and 
combines quantitative computational and experimental ap -
proaches in the mechanistic investigation of hallucinogenic 
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drug action of compounds in various structural classes 
including (1) indolealkylamines (eg, the hallucinogenic 
N,N-dimethyltryptamine); (2) ergolines (eg, D-LSD); and 
(3) phenylethylamines and phenylisopropylamines (eg, 
mescaline, DOI) (for reviews see Nichols, 1  Gresch et al, 2  
and Aghajanian and Marek 3 ) In the portion of this multifac-
eted work that is reviewed briefl y below, we emphasize the 
information elicited from the computational modeling and 
simulations of mechanisms that can discriminate the actions 
of hallucinogens on the GPCRs in comparison to activation 
by nonhallucinogenic congeners. The aim of this quantita-
tive modeling is to reveal the molecular details of the man-
ner in which the hallucinogens trigger the mechanistically 
related subcellular elements that are responsible for their 
special properties .  This type of information is tested, vali-
dated, and enhanced by the experimental component of the 
complete research program, and the insights are directed as 
well to the design of appropriate therapeutic measures. 

 The computational structure-function studies and simula-
tion approaches use 3-dimensional (3-D) models of the 
receptor molecules and their interactions with ligands. 
 Specifi c structure-based approaches have evolved for this 
purpose. 4  ,  5  To enable the study of downstream signaling 
following ligand-receptor interaction, we have also elabo-
rated larger scale models of GPCR functional entities, 
 ranging from models of GPCR oligomerization, 6-8  to 
 macromolecular interaction complexes with scaffolding 
proteins such as PDZ domains. 9-11  In addition, the newest 
type of investigation of hallucinogen mechanisms briefl y 
described here aims to integrate the inferences and insights 
resulting from the studies at the discrete molecular level, 
into quantitative mechanistic models of signaling pathways 
in the cell. 12-15  Such an integrative approach is especially 
advantageous for the type of multi-disciplinary studies 
required to understand the mechanisms of drugs of abuse, 
because the computational studies must be combined with 
experimental efforts that are performed at several levels of 
organization (or  “ scales ” ). These scales cover the range 
from molecular and cellular aspects (eg, of signaling by hal-
lucinogens and other ligands of the 5-HT receptors) to the 
integrated neurophysiological level, and whole animal 
behavior (eg, see range covered in 16-21 ). The power of the 
integrative approach lies in the ability to address complete 
functional systems in which the effects of drugs of abuse are 
expressed. Examples of such whole systems that can now 
be modeled and understood quantitatively are the cellular 
signaling pathways and networks. This is made possible by 
new data management tools and computational approaches 
developed by us and others. 13-15  The quantitative modeling 
of signaling mechanisms can generate new mechanistic 
hypotheses that are suitable for experimental verifi cation at 
the integrated system level (cell, tissue, organ) that is most 
pertinent to drug action. Our work discussed below provides 

specifi c illustrations of the success of such closely consid-
ered interactions and synergy between computational devel-
opments and experimental probing of the receptor systems 
(the combined approach).  

  THE SYNERGY BETWEEN THE COMPUTATIONAL 
MODELING AND EXPERIMENTATION 
 Briefl y summarized, the combined approach comprises the 
following stages: 

  1.  3-D constructs of molecular models are devel-
oped 4  ,  22  and probed computationally in simula-
tions of mutagenesis and structural perturbation, 23  
in order to address characteristics of different 
states of the receptor molecules that relate to 
activation, 18  including oligomerization. 7  ,  8  

2.  The 3-D models serve in computational simulations 
of functional mechanisms involving structural 
rearrangements (eg, ligand-induced), or interac-
tions in the signaling cascade, such as

   •   dimerization, 7  ,  8  
•   involvement in specifi c interactions with adaptor 

proteins such as PDZ-domains, 10  ,  11  and 
•   triggering of signaling pathways. 15    

 These computational studies generate and/or probe mecha-
nistic hypotheses regarding structural changes involved in 
the various states of the receptors and their signaling prop-
erties, for both wild type (WT) and mutant constructs. They 
are discussed in the subsequent section in light of the results 
from the cognate experimental studies in step (3) of the 
combined approach. 

3.  The activity of the corresponding constructs is 
measured in a variety of assays, including  

 •   evaluation of pharmacological properties 23  and 
degrees of constitutive activity of the GPCRs 
defi ned by various measurable end points, 18  ,  24  

•   measurement of nature and extent of dimerization 
established in experiments ranging from co-IP 
to cross-linking, and including FRET/BRET, 
etc, 25-29  

•   characterization of ligand-specifi c signaling 
pathways, 19  and 

•   creation of transgenic animals bearing the 
constructs to identify behavioral 
consequences. 20  ,  30      

 Recent progress in the development and application of the 
combined computational and experimental protocol is illus-
trated in the following sections for (1) intramolecular mech-
anisms triggering differential modes of ligand-dependent 
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activation of GPCRs, and (2) the management of quantita-
tive signaling data for modeling of cellular signaling 
pathways.  

  INTRAMOLECULAR MECHANISMS OF 
LIGAND-DEPENDENT RECEPTOR ACTIVATION 
  Structural Motifs Acting as Functional Microdomains 
in G Protein-coupled Receptors 
 A key element in the development of a structure-based 
insight about the intramolecular mechanisms of ligand-
dependent GPCR activation was our early observation that 
it is possible to parse the receptor structure into specifi c 
regions identifi ed as structural motifs (SM) acting as (often 
conserved) functional microdomains (FM) (SM/FMs). 
Especially noteworthy here is that the crystal structure of 
rhodopsin confi rmed the structural predictions regarding 
the key SM/FM that we obtained from the molecular mod-
els, and the functional properties of the SM/FMs we defi ned 
coincided with inferences from the crystal structure and 
were in agreement with the mechanisms suggested from 
molecular modeling and simulations of GPCRs in the rho-
dopsin-like family. 5  ,  31  

 The identifi cation of conserved motifs in the structures of 
rhodopsin-like GPCRs that create microenvironments 
with special importance for the function of the receptor 
was an early consequence of the model-informed studies 
we undertook in the collaborative effort with several 
experimental laboratories. These motifs were shown to be 
suffi ciently conserved in structure and function to merit a 
specifi c designation, and therefore we described them as 
SM/FMs in several different GPCRs. 5  ,  17  ,  18  ,  24  ,  32-34  The 
SM/FMs include, for example, the  “ ionic lock of the argi-
nine cage ” , which we described in these publications and 
has subsequently been confi rmed for many other 
GPCRs. 35-44  
 The NPxxY motif conserved in TM7 of the rhodopsin-like 
GPCRs (including the 5-HT2 subtypes) is an SM/FM 
involved in receptor activation mechanisms, as demon-
strated by our recent fi ndings of the  “ locked-on ”  phenotype 
regulated through this motif. 18   Figure 1  summarizes some 
of the fi ndings illustrating the effects of agonists and inverse 
agonists on the activity of the WT receptor, compared with 
one of the constitutively active constructs (Y7.53C) and the 
 “ locked-on ”  mutant Y7.53N. (Note the high basal activity 

  Figure 1.       Data illustrating the functional role of Y7.53 in the NPxxY motif: Different activated states of the 5-HT2C receptors are 
produced by mutations at the 7.53 locus. The Y7.53C mutation produces a canonical constitutively activated phenotype, characterized 
by increased basal activity compared with WT, reduction of the basal activity by various inverse agonists, and activation by various 
agonists. In contrast, the constitutive activity of the Y7.53N mutant is shown to be irreversible (by any of the inverse agonists), and 
various agonists are unable to activate further the receptor, which appears locked in an  “ on ”  state.   
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of the mutants and the ability of the inverse agonists to 
reduce it for the Y7.53C, but not Y7.53N construct). Of 
importance, we showed through the identifi cation of a 
 “ revertant ”  mutant phenotype 18  that this SM/FM connects 
to Helix 8 of the GPCRs. This connection through the direct 
interaction of residues at positions 7.53 and 7.60 is high-
lighted schematically in  Figure 2  using representations of 
the rhodopsin structure. 45-49  The direct interaction of the 
NPxxY motif with Helix 8 is likely to be very signifi cant in 
regulating the interactions of the C-terminal end of the 
GPCRs with various other cellular components involved 
in signaling (eg, the PDZ domains 10  ,  22 ). Like the other 
SM/FM we described, the functional properties of the 
NPxxY motif have been validated in other receptors as 
well, 50  including Rhodopsin. 49      
 Another key SM/FM motif, which we were the fi rst to 
 identify as being involved in GPCR activation, triggers the 
regulation of the  “ ionic lock ”  through a series of specifi c 
structural rearrangements in the upper (more extracellular) 
end of the GPCR molecule. This SM/FM comprises the 
cluster of aromatic residues in TM6 surrounding the 
 conserved Trp6.48, and straddling the conserved Pro6.50. 
[Note that we are using throughout the generic numbering 

system for GPCR residues defi ned initially in Ballesteros 
and Weinstein 51  and subsequently adopted widely in the rel-
evant literature]. This motif, which in the 5-HT2A receptor 
comprises residues F6.44(332), W6.48(336), and F6.52(640) 
can vary somewhat in composition in different receptors, 
depending on the nature of the ligand. But these variations 
preserve the steric properties that can trigger the rearrange-
ment of the other aromatic residues in the SM/FM in the 
manner of a  “ toggle switch ”  4  that connects the ligand bind-
ing event to the rearrangements in the receptor structure 
leading to activation. The mechanism of activation, simu-
lated in detail as reviewed by Visiers et al 4  and Filizola et al 5  
explains the role of the central residue in the SM/FM W6.48, 
which was proposed much earlier by the Sakmar Lab (Lin 
and Sakmar 52 ) to undergo a conformational rearrangement 
in the process of rhodopsin activation by light. The toggle 
switch mechanism of GPCR activation has now been incor-
porated in current accepted views of rhodopsin-like recep-
tor function. 5  ,  31  ,  35-39  ,  43  ,  44  ,  53-57  
 Of importance, the modeling suggested that the ability to 
trigger this toggle switch determines the effi cacy of a ligand. 
Since the position of a ligand in the binding site should 
affect its interaction with the aromatic cluster, the ligands 

  Figure 2.       The protein-protein interaction interface between a GPCR and its signaling environment is regulated by intramolecular 
interactions involving the NPxxY motif: The interaction between Y7.53 and the F7.60, which is in Hx8, controls the position of the 
helix and the C-terminal. This can regulate the interaction interface between the GPCRs and other proteins in the signaling cascade 
(eg, PDZ domains). The structural context is illustrated for the crystal structure of Rhodopsin. 45    
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will differ in the extent to which they can affect the toggle 
switch. As described in the following section, we had shown 
that even ligands differing little in chemical structure can 
adopt different positions in the receptor binding pocket, so 
that this detailed modeling identifi es a structural mechanism 
for ligand-dependent mode of receptor activation. Notably, 
in the 5-HT2AR model, the compounds with hallucinogenic 
properties appear to adopt a very different position in the 
binding pocket compared with nonhallucinogenic conge-
ners in the same family owing to the bulky substitutions of 
the cationic amine moiety in the hallucinogenic compounds, 
specifi cally 5-HT vs N,N-dimethyl congeners such as 
 psylocin, or vs LSD. 23  While this is not likely to be the only 
source of difference in ligand-dependent conformations of 
the receptor produced by hallucinogens, it is a structurally 
explicit prototype for the concept of ligand-dependent func-
tional selectivity. 58-61   

  Hallucinogens and the Different Modes of G 
Protein-coupled Receptor Activation 
 The central working hypothesis that has emerged from our 
sustained investigation of the GPCR targets of hallucino-
gens attributes the hallucinogenic potential of certain com-
pounds to the involvement of their structural elements in 
specifi c modes of interaction with the receptor ,  which pro-
duce distinct molecular mechanisms of receptor signaling. 
The hallucinogens are thus proposed to interact with the 
receptor molecules in a special manner that elicits, through 
these distinct interactions, a set of structural and dynamic 
receptor responses (including protein-protein interactions 
such as oligomerization, as well as selective PDZ-domain 
binding) that differ from those produced by other ligands, 
such as congeneric nonhallucinogens. This central hypoth-
esis led to the investigation of discriminant factors respon-
sible for the special properties underlying the effects of 
hallucinogenic drugs of abuse on the receptor molecules, 
and in particular those that result in triggering distinct sig-
naling pathways. The discriminant actions of hallucino-
gens are of added interest because they can reveal 
generalizable concepts of ligand-specifi c receptor func-
tion, 60-62  and the inferences should be directly applicable 
to many other drugs of abuse mechanisms. The elements 
of these discriminant actions of the ligands on GPCRs 
include: 

  1.  the modes of receptor response (conformational 
rearrangements and stabilization of activated 
states) responsible for protein-protein interactions 
ranging from oligomerization to interactions with 
scaffolding proteins (eg, PDZ domains), and 

2.  the relation to the selectivity and effi ciency of signal-
ing of (a) such conformational rearrangements, and 
(b) the resulting association/dissociation of 

protein-protein interactions (produced distinctively 
by the binding of this class of ligands).   

 Given the ability we developed to describe GPCR function 
in terms of SM/FMs, we sought fi rst to reveal the distinct 
ligand-receptor interaction properties of such motifs. The 
involvement of the SM/FMs in giving rise to distinct recep-
tor responses is emphasized by our fi ndings discussed in the 
previous section, regarding the role of ligand orientation in 
the measurable receptor response. These insights emerged 
from modeling and computational simulations 16  involving 
the Ser3.36(159)Ala mutation in the 5-HT2AR. The results 
show that 5-HT2AR agonists that have unmodifi ed cationic 
amine side chains interact with S3.36 in TM3, whereas 
those with substituted amines — such as the tryptamine-
based hallucinogens Psylocin and N,N-dimethyl-trypt-
amine — are prevented from this interaction by steric 
repulsion. Surprisingly, this slight difference in mode of 
binding and orientation in the binding pocket was found 
experimentally (in the collaboration with the lab of Stuart 
Sealfon, Mount Sinai School of Medicine) to create signifi -
cant differences in the pharmacological effi cacy (relative to 
5-HT). Similarly, alkyl substitution of the indole N1-amine 
in 5-HT and congeners (including LSD), which interacts 
with Ser5.46, reduced effi cacy more markedly at the WT 
than at the Ser5.46Ala mutant receptor. Computational 
modeling of binding pocket interactions of ligands with WT 
and mutant-receptor constructs demonstrated how the 
Ser3.36 and Ser5.46 interactions serve to modify the ago-
nist’s favored position in the binding pocket. This provides 
a striking illustration of differential modes of binding lead-
ing to differential outcomes of receptor activation by ligands 
that exhibit only slight structural differences and constitutes 
a fundamental new realization in our understanding of 
GPCR function. 

 The defi nition of the SM/FMs provided a specifi c structural 
context for the functional implications of ligand-dependent 
modes of receptor activation. Thus, using the combined 
approach of experiment and simulation we showed how the 
differential ligand positioning by one of the binding pocket 
components, is  “ sensed ”  by yet another SM/FM — the aro-
matic cluster in TM6 63  that functions as the toggle switch 
described in the preceding section. The dynamics of the 
local rearrangements in the structure of the aromatic cluster, 
which can be triggered by ligand binding in the pocket and 
interaction with the F6.52 sensor, were probed with compu-
tational simulations in a 3-D model of the serotonin 
5HT2AR. 4  ,  5  The computed rearrangement of the aromatic 
cluster 64  in response to ligand binding, and the subsequent 
conformational change induced at the P6.50 kink, are the 
likely trigger for the transition from the inactive form to the 
active state of the receptor. The quantitative simulation 
details 4  ,  65  support the hypothesis that the position of the 
agonist in the receptor is infl uenced by specifi c interactions 
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in TMs3 and 5 and determines the degree of receptor activa-
tion by agonist through the conformational rearrangement 
mechanism involving the SM/FM in TM6. This coupling of 
SM/FM-mediated mechanism of ligand-specifi c receptor 
activation is central to understanding the manner in which 
drugs of abuse, such as the hallucinogens, acquire and 
express their special properties. Moreover, such mechanis-
tic inferences have recently been shown to explain fi ndings 
in other GPCRs 54  ,  55  ,  66  including those targeted by other 
drugs of abuse, such as the cannabinoids. 67   

  Dynamic Elements of G Protein-coupled Receptor 
Signaling Mechanisms: New Insights and 
 Methodological Imperatives for Their Investigation 
 Computational modeling studies seeking mechanistic insight 
into signaling components from quantitative simulations 
require reliable structural models of the receptors. For most, 
albeit not all, studies, these models must include responsibly 
constructed and appropriately modeled loops connecting the 
transmembrane (TM) segments. In a previous study, 68  we 
discussed the basis for this latter conclusion regarding the 
loops. The essential role for a rigorous representation of the 
loops was illustrated as well by results from our earlier work 
on the second intracellular loop (IL2) in the 5-HT2CR. 69  
The study was performed to gain insight into the specifi c 
role of the intracellular loop segment following the con-
served ArgAspTyr (DRY) motif and the  “ arginine cage ”  
SM/FM in TM3 (see  Structural Motifs Acting as Functional 
Microdomains in GPCRs ). Specifi cally, we addressed the 
functional consequences of the surprising process of RNA 
editing discovered for the 5-HT2C receptor gene. 70  ,  71  These 
adenosine-to-inosine RNA editing events for 5HT2C recep-
tors were shown to result in sequence alterations at positions 
156, 158, and 160 in the IL2 region. The edited receptor iso-
forms were shown to exhibit various extents of changes in 
their pharmacological and physiological phenotypes. To 
identify the molecular mechanism of these pharmacological 
effects of editing, we explored the conformational proper-
ties of the edited IL2 in comparison with the unedited con-
struct, using an early form of our loop-structure-prediction 
methodology (we subsequently described an even more pow-
erful and accurate version of the method 72  ,  73 ). 
 The calculations showed that a modifi cation of a small ele-
ment in the sequence (ie, a change from the unedited se -
quence  I[156]RN[158]PI[160]EHSRFN  [termed  INI ] to 
 VRGPVEHSRFN  [termed  VGV ]) causes a signifi cant 
change in the preferred conformational orientation of the 
loop. A direct result is a signifi cant change in the interaction 
surface of the 5-HT2C receptor with the cognate G-pro-
tein. 69  The quantitative analysis showed that parallel changes 
in the observed pharmacological properties of the modifi ed 
( VGV ) receptors are attributable directly to the effect that 

this change in the interaction surface has on the formation 
of the GPCR signaling complex with G-proteins. 
 The major lesson from these results was the high sensitivity 
of the signaling system to even relatively small changes in 
the interaction surface presented to other intracellular loops, 
and/or the G-protein. They highlight the relation between 
intramolecular rearrangements caused by ligand-induced 
activation of the GPCRs, and the manner in which the acti-
vation signal is propagated. Specifi cally, the structural 
 consequences of ligand binding determine the mode of 
 protein-protein interactions along the signaling cascade of 
the receptors. The regulation of such GPCR-signaling pro-
tein interaction surfaces by ligand-related structural changes 
in the receptor molecule, such as those illustrated above for 
the NPxxY motif (see  Figure 2 ), continues to be the subject 
of intensive studies in our laboratory. 
 The importance of the dynamic structural changes in the 
mechanisms of ligand-dependent GPCR activation points to 
important methodological conclusions concerning the 
appropriate approaches to modeling of detailed molecular 
mechanisms of GPCRs. In particular, the immediate envi-
ronment of the receptor has emerged as an essential element 
in the representation and correct modeling of GPCRs for 
computational simulations (see  Figure 3 ). To achieve reli-
able results, the molecular models of the receptor structures 
used in computational simulations have to be complete and 
must include (1) the TM-connecting loops, constructed with 
appropriate structure-prediction methods and calculated 
explicitly, 65  ,  68  ,  72  and (2) the complex environment of the 
molecular system composed of protein/ligand/waters (ie, 
bulk water and the phospholipid bilayer). 68  Such molecular 
constructs ( Figure 3 ) are then suitable for the examination 

  Figure 3.       Molecular model of the complete GPCR (rhodopsin) 
in an atomistic representation of its environment. The protein is 
rendered in gold color, with the retinal in red. The lipid portion 
of the phospholipids is shown in green, and their head groups are 
rendered in yellow. The surrounding water molecules are 
rendered in blue.   
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of interactions of various ligands from the results of exten-
sive simulations of ligand-receptor complexes with the 
monomeric receptor structures, challenged by perturbations 
and control experiments. Clearly, any attempt to understand 
the mechanisms and effects of GPCR dimerization must 
take into account the environment. For discrete molecular 
representations of the membrane environment, it is neces-
sary to carry out careful calibrations of the model. 74  Based 
on the evidence that rhodopsin reconstituted in artifi cial 
membranes is functional, 75  we use a hydrated patch of 
1-Palmitoyl-2-oleoyl- sn -glycero-3-phosphocholine (POPC) 
lipid bilayer membrane to simulate the appropriate environ-
ment for receptor dimers. The size of a lipid unit cell that 
could accommodate a receptor dimer was calibrated with 
the dimer confi guration with TM4 and TM5 at the interface 
recently proposed for rhodopsin, 76  which includes both TMs 
and loops regions. Our studies 74  ,  77  ,  78  have shown the appro-
priate distance between the solute protein and a simulation 
box boundary to correspond to ~4 to 5 layers of lipid mole-
cules. According to this criterion, the unit cell was gener-
ated by duplicating and truncating a fully equilibrated POPC 
patch. 79  Based on the average size of a rhodopsin dimer (85 × 
50 Å), as calculated from the oligomeric complex (PDB ID 
code: 1N3M), an orthorhombic lipid unit cell was selected 
for such studies, with a = 160 Å, b = 124 Å, and c = 98 Å. 
Pre-equilibrated water molecules were added at the edges of 
both lipid patches in the direction of the membrane normal, 
resulting in a system with 640 lipid molecules and 36 836 
water molecules, for a total of 143 788 atoms (with the 
 Rhodopsin dimer in this equilibrated POPC bilayer unit 
cell, the system size went up to 148 252 atoms).   

 The equilibration of the POPC bilayer unit cell using GRO-
MACS with lipid parameters 80  and simple point charge 
(SPC) water model was performed after energy minimiza-
tion in several cycles of steepest descent followed by con-
jugate gradient (converged at 100 kJ  ·  mol  − 1   ·  nm  − 1 ). These 
simulations are performed with semi-isotropic coupling, 
with the pressure, at 1.0 bar, coupled separately to the xy 
plane and z directions. Temperature is controlled with the 
weak coupling scheme of Berendsen, coupling each phase 
of lipid and water separately with a 310 K bath. The particle 
mesh Ewald (PME) summation algorithm is applied, with 
interpolation order set to 6 and maximum grid spacing for 
the fast Fourier transform (FFT) set to 0.12 nm. The Cou-
lomb cut-off, and cut-off for the short-range neighbor list 
were both set to 0.9 nm, and a 1.2-nm Lennard-Jones cut-
off was applied. The size of the system caused the potential 
energy of the system to reach a stable plateau only after 
1-nanosecond simulation time; the converged area of the 
xy plane per lipid (61.8 Å 2 ), and the deuterium order param-
eter profi le taken over the last 1 nanosecond of the trajec-
tory were both close to the experimentally determined 
values. 81  

 In view of the complexity of the intramolecular rearrange-
ments produced by distinct effects of various ligands, and 
the delicate balance of protein-protein interactions involved 
in the signal transduction mechanism by GPCRs, there can 
no longer be any doubt that the modeling of such systems 
must reach a high level of physical realism in order to be 
useful for structure-function studies, as discussed and illus-
trated specifi cally in Mehler et al. 68  Unfortunately, such 
methodological imperatives are all too often neglected in 
computational attempts to describe structure-function rela-
tions of GPCRs. Not surprisingly, this neglect leads invari-
ably to disappointingly wrongheaded inferences that are 
evident in publications on this subject. Unfortunately, it is 
not always recognized immediately how erroneous some of 
the inferences can be if they are reached from such fl awed 
studies. Thus, GPCR models with loops attached to the TM 
region using methods other than careful structure prediction 
(eg, from the often used spurious homologies with short 
segments that are fi shed randomly from the Protein Data 
Bank, or from the generation of loop segment structures 
using weak methods such as energy minimization) produce 
misleading models, which lead to incorrect conclusions 
about important mechanisms such as the involvement of 
loops in ligand binding, or oligomerization. Similarly, bad 
approaches to structure-function modeling of GPCRs 
include energy-based minimization and/or dynamics simu-
lations that are mistakenly performed in vacuum (using any 
variety of fi xed-value  “ dielectric constants ” ). For these 
membrane proteins, the approach is fl awed, because by 
neglecting the 3 different phases in which the loops and TM 
region are imbedded, the structures are subjected to artifacts 
(eg, the interaction of polar residues from the loops), with 
side chains in the TM regions. This type of spurious interac-
tion in vacuum would have been prevented by a correct rep-
resentation of the environment composed of the lipid, 
phospholipids head groups, and the surrounding aqueous 
medium. In the absence of appropriate modeling of the 
environment, the loops  “ collapse ”  toward the TM region 
and produce unacceptable artifacts.   

  MODELING G PROTEIN-COUPLED RECEPTOR 
ACTIVITY AT THE SYSTEMS LEVEL 
 Signaling pathways, such as those triggered into action by 
ligands binding to the GPCRs, constitute the fundamental 
mechanisms underlying cell physiology and its connection 
to the environment. In turn, these signaling pathways inter-
act, and they are interconnected in the cell ’ s signaling net-
works that provide the mechanisms of regulation for most 
cellular functions. Not surprisingly, signaling pathways, 
networks, and the underlying molecular mechanisms are the 
focus of intense current research that encompasses both 
experimental and theoretical studies. 12  ,  13  ,  82-85  To integrate 
the results of our studies on the receptor mechanisms of 
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 hallucinogens, with the current understanding of such sig-
naling pathways, we are developing specialized computa-
tional tools, and quantitative models of signaling cascades 
triggered by receptor activation. 
 The  “ models of signaling pathways ”  discussed in this sec-
tion are distinct from the molecular models of receptors and 
protein-protein complexes that were the subject of the pre-
vious sections. A useful defi nition of the signaling models 
states:  “ A model, in this language, is simply a collection of 
hypotheses and facts brought together in an attempt to 
understand the [cellular] phenomenon … the facts and 
hypotheses are composed of the molecular species and the 
biochemical or electrophysiological transformations that 
are presumed to underlie the cellular events. ”  13  Therefore, 
these models provide a formal framework for understanding 
the mechanisms underlying a particular event in the cell. 
The models consist of the molecular species participating in 
the event, and the mechanisms (eg, protein-protein interac-
tions, phosphorylation reactions) and diffusion fl uxes in a 
particular compartment of the cell. The quantitative ele-
ments comprise the concentrations, locations, interaction 
rates and transport kinetics of the molecules involved in the 
event (eg, signaling), and they relate the hypothesized 
mechanisms to quantitative physico-chemical details. 12  The 
models are used in simulations in which the equations are 
solved as a function of time and initial conditions (see below, 
section Systems — Level Modeling and Simulation in the 
Study of Hallucinogen Mechanisms). The quantitative 
information from these simulations contains the time-depen-
dent changes in concentrations of cell components, and the 
results of their interactions. We have been able to undertake 
this work with the support from the Program for Developing 
Computational and Theoretical Models in Drug Abuse and 
Addiction at National Institute on Drug Abuse (NIDA). 

  SigPath — A Comprehensive Information 
Management System 
 The large amount of data used in the modeling effort, as 
well as the resulting models, must be managed and main-
tained in a transparent and readily accessible database. The 
existing examples of bioinformatics databases offer large 
amounts of information about the parts that constitute an 
integrated system; they usually specialize in one type of 
biological entity (eg, gene, transcript, protein, specifi c 
classes of proteins). However, the modeling goals prompted 
us to design a new type of information management system 
(IMS), the SigPath project. This offers a new type of bioin-
formatics tool that integrates resources and scientifi c themes 
(see detailed description in Campagne et al, 15  and at the 
Institute for Computational Biomedicine website. More-
over, SigPath, which is freely available over the Internet 
( http://www.sigpath.org ) both as a Web application and as 

source code released under the GNU General Public License, 
connects traditional bioinformatics databases with model-
ing environments (ie, mathematical modeling and simula-
tion tools, such as Virtual Cell 12  ,  86  ,  87 ) and acts as a bridge 
between bioinformatics and computational cell biology 
resources. The system differs from traditional bioinformat-
ics databases in the following ways: (1) it stores the level of 
quantitative information needed to support the creation of 
quantitative models; (2) it organizes information as con-
nected graphs of strongly typed elements of information; 
(3) it focuses on allowing end-users to manage information 
directly — see scheme in  Figure 4 .   
 The development of SigPath enables us to seek the mecha-
nistic details of hallucinogen activities through the integra-
tive approach that combines fi ndings from computational 
and modeling studies of interactions among cellular compo-
nents, with those obtained experimentally. This integration 
makes it necessary to combine different types of data and 
information, including structural (eg, mutant constructs) as 
well as quantitative data (eg, on the concentrations of the 
components, and their kinetic interaction constants). The 
example of the activation of the MAPK1,2 pathway by 
5-HT2AR ligands, described in the subsequent section illus-
trates as well the nature of criteria and choices in the devel-
opment of the SigPath ontology. Thus, when considering 
the example of cellular compartments, one option is to 
defi ne the representation of these compartments as contigu-
ous subregions of space. Formally, this data representation 
choice calls for coding spatial geometries, for instance, as a 
combination of elementary volume elements (eg, through 
union and intersection), or as the space enclosed within a 
surface. However, there is a current paucity of spatial data 
about 3-D subcellular geometries, and the Virtual Cell tool 
we used (see below) was designed to work with 2-D geom-
etries (eg, as acquired with various microscopy methods). 
We plan to extend the SigPath ontology, so that intracellular 
and extracellular compartments where biological entities 
have been experimentally observed will be represented by 
the Compartment class (eg, membrane proteins that are pro-
duced in the ER, transfer to the Golgi and then to the plasma-
membrane, can be described in this representation), and by 
the Localized Chemical class that positions the reagents in 
a specifi c cellular location (compartment or membrane). 
Reactions among molecules can then be represented in spe-
cifi c compartments or membranes, or across compartments 
in realistic 3-D representations that are based on experimen-
tal data from imaging at the appropriate level of detail.  

  Systems-level Modeling and Simulation in the Study of 
Hallucinogen Mechanisms 
 To reveal the discriminant features of the cellular mecha-
nisms triggered by the hallucinogens’ actions on the 5-HT2 
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receptors we studied, we must combine the mechanistic 
insights at the level of GPCR function, with the growing 
understanding of signal transduction pathways in the cells. 
In particular, the application of novel modeling approaches 
is needed to address the physiological consequences of the 
signal transduction processes as a series of intracellular 
interactions in the signal transduction pathways. To this 
end, we take advantage of bioinformatics tools 15  as described 
in the previous section, Sigpath — A Comprehensive In -
formation Management System, and apply the accessible 
quantitative approaches for cell systems modeling (eg, 
see 12  ,  13  ,  86  ,  88 ) to study the structure-function relations of 
GPCRs in the context of their signaling pathways. 

 Understanding signal fl ow from the cell surface requires 
attention to the signaling events triggered at the receptors 
and propagated through protein-protein interactions. The 
schematic representation of a signaling pathway triggered 
by activation of the 5-HT2AR is shown in  Figure 5A . The 
involvement of the MAPK system in the signaling cascade 

linking the 5-HT2AR to PLA2 activation has been observed 
recently 89  and analyzed in comparison to other signaling 
modes. 90  As discussed in illuminating detail in a recent 
review by Nichols, 1  signaling of these receptors through 
Phospholypase C (PLC) 91-94  is complemented by apparently 
independent action in the PLA2 signaling cascade. 89  ,  90  ,  95  
The importance of this pathway was emphasized in the 
review of hallucinogen mechanisms. 1  The exciting previous 
fi ndings about the MAPK1,2 pathway from the Iyengar lab 
(Bhalla et al 96 ) prompted a collaborative study focused on 
determining if simultaneous activation of the pathways acti-
vated through the 5HT1A and 5HT2A receptors leads to a 
switching of mitogen-activated protein kinase (MAPK 1,2). 
A schematic illustration of a possible way in which the sig-
naling pathways triggered by activation of these 2 receptors 
could communicate in the activation of MAPK1,2 is given 
in  Figure 5B . As shown in the scheme, the putative interac-
tion of the pathways to form a MAPK1,2 activation network 
triggered in combination by the 2 5-HT receptor subtypes is 
proposed to converge at phospholypaseC-beta (PLCb). The 

  Figure 4.    Schematic representations of SigPath 15  characteristics: SigPath contents compared with traditional databases show the 
information management characteristics that include detailed reactions among the entries, as well as their quantitative parameters; the 
stored reaction information is illustrated, with specifi c identifi cation numbers (sp-id of the form spxxxx, where x are running numbers) 
assigned by SigPath; the transformation of the reaction information into ODEs performed through transparent connections to 
mathematical modeling environments such as VirtualCell. 12    
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possible intermediates involved in MAPK signaling are 
known to include PKC, Src and PI-3K, but the overall con-
nectivity is strongly dependent on cell type, and the quanti-
tative details of the signal fl ow through this pathway are not 
yet understood fully. In the collaborative studies with the 
Iyengar lab, Chiung-wen Chang has performed time course 
experiments of MAPK-1,2 phosphorylation in 2 cell lines, 
NIH3T3 and COS-7, transfected with 5-HT2A and 5-HT1A 
receptors individually and together. The preliminary results 
indicate that cotransfection of 5-HT2A and 5-HT1A recep-
tors in COS-7 cells under stimulation of 5-MT (5-methyoxy-
tryptamine), a general 5-HT1/5-HT2 agonist, produced 
prolonged activation of phospho-MAPK 1,2 compared with 
transfection with each of the receptors alone, but of a 
reduced magnitude. In NIH3T3 cells, prolonged activation 
of phospho-MAPK 1,2 was observed in cotransfected 

5-HT2A and 5-HT1A receptors with treatment of a selective 
5-HT2 agonist DOI ((+/ − )-2,5-dimethoxy-4-iodoamphetamine), 
which has hallucinogenic properties and elicits the hallucinogen-
specifi c transcriptome fi ngerprint. 19    
 To simulate a detailed biochemical model of 5-HT2A recep-
tor-mediated MAPK1,2 activation, biochemical parameters 
were obtained from the literature and computations were 
performed using Virtual Cell. 86  ,  87  Briefl y described, the 
quantitative modeling (simulation) procedure in Virtual Cell 
fi rst converts the specifi ed biochemical reaction steps into a 
system of ordinary differential equations (ODEs) and applies 
constraints related to mass conservation and pseudo steady-
state approximations, before applying numerical solvers to 
perform the simulations. The quantitative data stored in Sig-
Path is converted automatically to systems of ODE, as illus-
trated schematically in  Figure 4 , and conditions are imposed 
to solve these ODEs: (1) physical barriers are identifi ed 
within the cellular system, such as the cell membrane, organ-
elle membrane, etc; (2) the location of the reaction species is 
defi ned in each physical compartment; and (3) initial condi-
tions are set for species concentrations and reactions, includ-
ing the rate parameters. The results of the simulations are 
compared with data from measurements performed on con-
trol systems, or available in SigPath and the literature for 
cognate elements in other studied cell systems (cf 88  ,  96-99 ). 
 The main features of the results (not shown here) are in 
agreement with quantitative experimental data. Notably, the 
simulations serve to elucidate the role of the RGS proteins 
in regulating signaling from the agonist occupied receptor 
to downstream effectors. It is undoubtedly clear that such 
studies encounter major bottlenecks in the form of (1) the 
gathering and curation of the qualitative (pathway) data 
required for the models, and the quantitative data required 
for the simulations; and (2) the sheer paucity of such data. 
These have been considered in the development and popu-
lation of the SigPath IMS, and in several responsible reviews 
in the current literature in systems biology. 12-14  ,  82  ,  83  ,  88  Still, 
the value of modeling with the available levels of data for 
both hypothesis testing and experiment design have been 
considered to remain highly signifi cant. 82  Ultimately, we 
expect increasingly more realistic representation of signal-
ing in dynamic compartments within the cell, endowed with 
spatio-temporal characteristics obtained from experiment. 
Such models are likely to be increasingly necessary for 
development of an understanding of how the multiple func-
tions of a cell are coordinated and regulated, and to evaluate 
the specifi cs of the perturbations caused by the hallucino-
genic ligands of GPCRs.   
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